

Politechnika Wrocławska

Zjawiska nieliniowe w światłowodach W110PA-SM0050W (FTP003030W) rok akademicki 2024/25 semestr zimowy

Wykład 7

L-1 p. 221

Karol Tarnowski

karol.tarnowski@pwr.edu.pl

Politechnika Wrocławska

Karol Tarnowski

Wrocław University of Science and Technology, Faculty of Fundamental Problems of Technology Department of Optics and Photonics, Fiber Optics Group

05.09.2024

Politechnika Wrocławska

> Unite! University Network for Innova Technology and Engineering

> > HR EXCELLENCE IN RESEARC

23rd Slovak-Czech-Polish Optical Conference, Štrbské Pleso, September 02-06, 2024

Looking into the landscape of frequency conversion processes in optical fibers: from single mode to multimode

Karol Tarnowski

Wrocław University of Science and Technology, Faculty of Fundamental Problems of Technology Department of Optics and Photonics, Fiber Optics Group

05.09.2024

Outline		
Introduction	 Description of frequency conversion proc in optical fibers 	esses
Single mode propagation	 All-normal dispersion supercontinuum Soliton self-frequency shift 	1
Birefringent fibers	 Polarized all-normal dispersion SC Solitons - orthogonal Raman scattering 	2
Few mode fibers	 Intermodal-vectorial four-wave mixing Far-detuned four-wave mixing 	few
Multimode fibers	 Discretized conical emission 	many

:hnika awska	Outline	
	Introduction	 Description of frequency conversion processes in optical fibers
	Single mode propagation	 All-normal dispersion supercontinuum Soliton self-frequency shift
	Birefringent fibers	 Polarized all-normal dispersion SC Solitons - orthogonal Raman scattering
	Few mode fibers	 Intermodal-vectorial four-wave mixing Far-detuned four-wave mixing
	Multimode fibers	 Discretized conical emission

Introduction

nonlinear fiber optics

Lasers

frequency conversion processes

Optical fibers

23rd Slovak-Czech-Polish Optical Conference, Štrbské Pleso, September 02-06, 2024 Introduction Theory/simulations Experiment Input field • Laser source wavelength, pulse/CW, duration, energy/power • Nonlinear fiber • Fiber properties chromatic dispersion, effective mode area, overlap coefficients Detection setup Output field spectrometer, optical spectrum analyzer, autocorrelator, FROG system

Typical experimental setup

Nonlinear Schrödinger equation

Generalized nonlinear Schrödinger equation

$$\frac{\partial A}{\partial z} = -\frac{\alpha}{2}A + i\sum_{n=1}^{\infty} \frac{i^n \beta_n}{n!} \frac{\partial^n A}{\partial t^n} + i\gamma A \int_0^{\infty} R(t') |A(z,t-t')|^2 dt'$$

Nonlinear Schrödinger equation

$$\frac{\partial A}{\partial z} = \left(-\frac{i\beta_2}{2}\frac{\partial^2}{\partial t^2} + i\gamma |A|^2\right)A$$

$$i\hbar\frac{\partial}{\partial t}\Psi = \left(-\frac{\hbar^2}{2m}\nabla^2 + V\right)\Psi$$

Frequency conversion processes

Optically induced change in the refractive index

- self-phase modulation (SPM)
- cross-phase modulation (XPM)
 - same mode different wavelengths
 - same mode orthogonal polarizations
 - different modes
- four-wave mixing (FWM)
- modulation instability (MI)

Inelastic scattering

• stimulated Raman scattering (SRS)

Frequency conversion processes

Optically induced change in the refractive index

- SPM
- XPM
- MI
- degenerated FWM

Frequency conversion processes

Optically induced change in the refractive index

four-wave mixing

$$\omega_1 + \omega_2 = \omega_3 + \omega_4$$

$$\beta_1 + \beta_2 = \beta_3 + \beta_4$$

$$\beta_1 + \beta_2 = \beta_3 + \beta_4 + \Delta k_{\rm NL}$$

Frequency conversion processes

Inelastic scattering

• stimulated Raman scattering (SRS)

Q. Lin, G. P. Agrawal, Optics Letters, 31(21): 3086 (2006)

Frequency conversion processes

Inelastic scattering

• Intrapulse Raman scattering (SRS)

ω

Dutline			
Introduction	 Description of frequency conversion processes in optical fibers 		
Single mode propagation	 All-normal dispersion supercontinuum Soliton self-frequency shift 		
Birefringent fibers	 Polarized all-normal dispersion SC Solitons - orthogonal Raman scattering 		
Few mode fibers	 Intermodal-vectorial four-wave mixing Far-detuned four-wave mixing 		
Multimode fibers	 Discretized conical emission 		

All-normal dispersion supercontinuum

Nonlinear microstructured fiber with normal dispersion

- design
- fabrication
- characterization
- supercontinuum generation

Optics Express, 24(26): 30523 (2016)

All-normal dispersion supercontinuum

Nonlinear microstructured fiber with normal dispersion

broad and coherent supercontinuum spectrum

(a) (b) 0.904 nJ 0.889 nJ (a) 0.690 nJ 0.611 nJ 0dB/div 0dB/div 10dB/div 10dB/div 0.402 nJ 0.448 nJ -1.45 nJ 0.206 nJ 0.236 nJ 1.20 nJ 0.098 nJ 0.129 nJ -0.95 nJ 0.020 nJ 0.027 nJ 0.70 nJ (d) (d) (c) (c) 0.928 nJ 1.008 nJ -0.45 nJ 0.725 nJ 0.813 nJ 0dB/div -0.20 nJ 10dB/div l0dB/div 0dB/div 0.442 nJ 0.489 nJ - -1.45 nJ 0.224 nJ 0.273 nJ 0.111 nJ -0.141 nJ -0.022 nJ 0.030 nJ 1.6 1.8 2 2.2 1 1.2 1.4 1.6 1.8 2 1.2 1.4 2.2 1.2 1.4 1.6 1.8 2 2.2 1.2 1.4 1.6 1.8 2 2.2 2.4 $\lambda [\mu m]$ $\lambda [\mu m]$ $\lambda [\mu m]$ $\lambda [\mu m]$

23-fs

pumping

Optics Express, 24(26): 30523 (2016)

Soliton self-frequency shift

Nonlinear microstructured fiber with anomalous dispersion

broad spectral tuning

O. Szewczyk et al., IEEE Journal of Lightwave Technology 39(10): 3260 (2021)

Soliton self-frequency shift

Nonlinear microstructured fiber with anomalous dispersion

broad spectral tuning

O. Szewczyk et al., IEEE Journal of Lightwave Technology 39(10): 3260 (2021)

\cap	1 1 f	·1;	n	
U	u			C

Introduction

Single mode propagation

Birefringent fibers

Few mode fibers

Multimode fibers

- Description of frequency conversion processes in optical fibers
- All-normal dispersion supercontinuumSoliton self-frequency shift
- Polarized all-normal dispersion SC
- Solitons orthogonal Raman scattering
- Intermodal-vectorial four-wave mixing
- Far-detuned four-wave mixing
- Discretized conical emission

Polarized all-normal supercontinuum (Pol-AND SC)

Coupled nonlinear Schrödinger equations

$$\tilde{A}_{x} = \sqrt[4]{rac{A_{
m eff}\left(\omega
ight)}{A_{
m eff}\left(\omega_{
m 0}
ight)}} \tilde{A}_{x}, \quad \tilde{C}_{y} = \sqrt[4]{rac{A_{
m eff}\left(\omega
ight)}{A_{
m eff}\left(\omega_{
m 0}
ight)}} \tilde{A}_{y}$$

$$\begin{aligned} \frac{\partial C_x}{\partial z} &= D_x \left(\tilde{C}_x \right) + \\ &+ i \frac{n_2 n_0 \omega}{c n_{\text{eff}} \sqrt{A_{\text{eff}} \left(\omega \right) A_{\text{eff}} \left(\omega_0 \right)}} \cdot \mathcal{F} \left\{ \left(\left| C_x \right|^2 + \frac{2}{3} \left| C_y \right|^2 \right) C_x + \frac{1}{3} C_y^2 C_x^* \exp\left(-2i\Delta\beta z \right) \right\} \\ &\frac{\partial \tilde{C}_y}{\partial z} &= D_y \left(\tilde{C}_y \right) + \\ &+ i \frac{n_2 n_0 \omega}{c n_{\text{eff}} \sqrt{A_{\text{eff}} \left(\omega \right) A_{\text{eff}} \left(\omega_0 \right)}} \cdot \mathcal{F} \left\{ \left(\left| C_y \right|^2 + \frac{2}{3} \left| C_x \right|^2 \right) C_y + \frac{1}{3} C_x^2 C_y^* \exp\left(+2i\Delta\beta z \right) \right\} \end{aligned}$$

Polarized all-normal supercontinuum (Pol-AND SC)

Nonlinear birefringent microstructured fiber with normal dispersion

- design
- fabrication
- characterization
- supercontinuum generation

Optics Express 25(22): 27452-27463 (2017)

Polarized all-normal supercontinuum (Pol-AND SC)

Supercontinuum generation

- normal dispersion
- linearly polarized
- coherent

Optics Express 25(22): 27452-27463 (2017)

Polarized all-normal supercontinuum (Pol-AND SC)

Supercontinuum generation

- normal dispersion
- linearly polarized
- coherent

Scientific Reports 9: 12313 (2019)

Orthogonal Raman scattering

Raman response function

Q. Lin, G.P. Agrawal, Optics Letters 31(21): 3086 (2006)

Orthogonal Raman scattering

Coupled nonlinear Schrödinger equations

• with vector Raman response

$$N_{x}\left(\tilde{C}_{x},\tilde{C}_{y}\right) = \bar{\gamma}_{x}\mathcal{F}\left\{ \begin{aligned} \left(1-f_{R}\right) \times \left(\left(\left|C_{x}\right|^{2} + \frac{2}{3}\left|C_{y}\right|^{2}\right)C_{x} + \frac{1}{3}C_{y}^{2}C_{x}^{*}\exp\left(-2i\Delta\beta z\right)\right) + \\ +f_{R} \times \left[\left(h_{1}\otimes\left|C_{x}\right|^{2} + h_{2}\otimes\left|C_{y}\right|^{2}\right)C_{x} + \\ +h_{3}\otimes\left(C_{x}C_{y}^{*} + C_{y}C_{x}^{*}\exp\left(-2i\Delta\beta z\right)\right)C_{y} \right] \end{aligned} \right\}$$

$$N_{y}\left(\tilde{C}_{y},\tilde{C}_{x}\right) = \bar{\gamma}_{y}\mathcal{F}\left\{ \begin{aligned} \left(1-f_{R}\right) \times \left(\left(\left|C_{y}\right|^{2} + \frac{2}{3}\left|C_{x}\right|^{2}\right)C_{y} + \frac{1}{3}C_{x}^{2}C_{y}^{*}\exp\left(+2i\Delta\beta z\right)\right) + \\ +f_{R} \times \left[\left(h_{1}\otimes\left|C_{y}\right|^{2} + h_{2}\otimes\left|C_{x}\right|^{2}\right)C_{y} + \\ +h_{3}\otimes\left(C_{y}C_{x}^{*} + C_{x}C_{y}^{*}\exp\left(+2i\Delta\beta z\right)\right)C_{x} \right] \end{aligned} \right\}$$

Orthogonal Raman scattering

Polarization conversion

K. Stefańska et al., Optics Letters 47(16): 4183 (2022)

\cap	ı ıt	li	ne
U	uu		

Introduction

Single mode propagation

Birefringent fibers

Few mode fibers

Multimode fibers

• Description of frequency conversion processes in optical fibers

All-normal dispersion supercontinuumSoliton self-frequency shift

• Polarized all-normal dispersion SC

• Solitons - orthogonal Raman scattering

• Intermodal-vectorial four-wave mixing

• Far-detuned four-wave mixing

• Discretized conical emission

Few mode fibers

System of nonlinear Schrödinger equations

 $\frac{\partial A_p}{\partial z} = -\frac{\alpha_p}{2} A_p + i \left(\beta_0^{(p)} - \beta_0^{(0)}\right) A_p +$ $-\left(\beta_1^{(p)}-\beta_1^{(0)}\right)\frac{\partial A_p}{\partial t}+i\sum_{n=0}^{\infty}\frac{i^n\beta_n^{(p)}}{n!}\frac{\partial^n A_p}{\partial t^n}+$ $+i\frac{n_2\omega_0}{c}\left(1+\frac{i}{\omega_0}\frac{\partial}{\partial t}\right)\times$ $\times \sum_{l=1}^{N-1} \left\{ \left(1 - f_R\right) S_K^{(plmn)} A^{(l)} A^{(m)} A^{(m)*} + f_R S_R^{(plmn)} A^{(l)} \left\lceil h \otimes \left(A^{(m)} A^{(m)*}\right) \right\rceil \right\}$

Intermodal-vectorial FWM

Fiber modes

Intermodal-vectorial FWM

Vectorial four-wave mixing

$$\beta_0^{x} + \beta_0^{y} = \beta_0^{x} + \beta_1^{x}\Omega + \frac{1}{2}\beta_2^{x}\Omega^2 + \beta_0^{y} - \beta_1^{y}\Omega + \frac{1}{2}\beta_2^{y}\Omega^2$$

$$-\Delta\beta_1\Omega = \beta_2\Omega^2$$

х,у

Intermodal-vectorial FWM

Intermodal four-wave mixing

Intermodal-vectorial FWM

Proccesses enabled by selective excitation of modes

Far-detuned FWM

Graded-index fiber

K. Stefańska et al., Scientific Reports 14: 15872 (2024)

Far-detuned FWM

Graded-index fiber

Far-detuned FWM

Graded-index fiber

K. Stefańska et al., Scientific Reports 14: 15872 (2024)

Outline

Introduction

Single mode propagation

Birefringent fibers

Few mode fibers

Multimode fibers

• Description of frequency conversion processes in optical fibers

All-normal dispersion supercontinuumSoliton self-frequency shift

• Polarized all-normal dispersion SC

- Solitons orthogonal Raman scattering
- Intermodal-vectorial four-wave mixing
- Far-detuned four-wave mixing

• Discretized conical emission

Discretized conical emission

Conical waves

D. Faccio, P. Di Trapani, Nonlinear Filamentation Dynamics (2007)

Discretized conical emission

Conical emission in bulk

K. Stefańska et al., ACS Photonics, vol. 10(3), pp. 727-732, 2023

Discretized conical emission

Multimode optical fiber

- Core diameter 105 µm
- NA = 0.22

Journal of the Optical Society of America B 38(3): 732-742 (2021)

Discretized conical emission

Experimental results

K. Stefańska et al., ACS Photonics, vol. 10(3), pp. 727-732, 2023

Conclusions

Optical fibers allow to observe and investigate the broad spectrum of frequency conversion processes

The numerical experiments allow to get insight into the complex dynamics of nonlinear phenomena

Acknowlegments

Fiber Optics Group www.fog.pwr.edu.pl

Prof. Wacław Urbańczyk

Tadeusz Martynkien

Kinga Żołnacz

Sylwia Majchrowska

Andrzej Gawlik

Karolina Stefańska

Rafał Cichowski

Laboratory of Optical Fiber Technology, Lublin

Paweł Mergo

Krzysztof Poturaj

Laser & Fiber Electronics Group, Wrocław Laboratoire Interdisciplinaire Carnot de Bourgogne, Dijon

Jarosław Sotor

Grzegorz Soboń

Olga Szewczyk

Bertrand Kibler

Pierre Béjot

Karolina Stefańska

Acknowlegments

Narodowe Centrum Nauki

- 2014/13/D/ST7/02090, Sonata 7 Program
- 2018/30/E/ST7/00862, Sonata Bis 8
- 2016/22/A/ST7/00089, Maestro 8

Narodowe Centrum Badań i Rozwoju

• POIR.04.01.01-00-0037/17

NCBR

NARODOWE CENTRUM NAUKI

Narodowa Agencja Wymiany Akademickiej

- Polonium 2019-2021
- Polonium 2023-2024

NARODOWA AGENCJA WYMIANY AKADEMICKIEJ

